Building Multi-Agent Systems with Object-Oriented
Language and Expert System Shell: A Process Control
Applicationr

Li Wei
Software Engineer
Unit. 607 Bldg. 310 Zhong Guan Cun Nan 2 Tiao 1 Hao

Beijing 100080 P.R.China
8610-62986638-3767

|iweid@legend.com.cn|

ABSTRACT

Agent programming has been received much attention recently in
industrial application. In this paper we described a method for
combining rule-based language with object-oriented languages,
and established a multi-agent system for real-world problems.
Based on the proposed multi-agent model, we developed a
prototype system for the real-time supervision of oil transporting
and storing in a refinery.

Keywords

multi-agent, object-oriented, rule, expert system shell

1. INTRODUCTION

Agent technology has been considered as an important approach
for developing distributed intelligent manufacturing systems.
Many researchers have attempted to apply agent technology to
industrial ~application, such as manufacturing enterprise
integration, supply chain management, manufacturing planning,
scheduling and control, materials handling, and holonic
manufacturing systems.

Among these published works, methods of building MAS systems
are discussed. However, in this paper we focus on some practical
issues of the MAS, and try to build our MAS based on the object-
oriented system, which already exists.

Combining expert system shell (such as ILOG Rules, CLIPS, and
Jess) with an object-oriented language, we give an example of
multi-agent systems: Oil Storage Supervision and Decision
Support System (OSS & DSS). The system has three fundamental
features:

Firstly, OSS & DSS are assisted by a rules-base, which support
agents to make quick and accurate decisions.

Secondly, OSS & DSS depend on acting in response to a
dynamically changing environment.

Finally, the whole process was displayed by a graphical interface
to demonstrate the changing status of oil storage and transport.

Section 2 describes a method to build practical multi-agent
systems. Section 3 presents the architecture of a real-time multi-

Hongan Wang
Associate Researcher
Institute of Software, Chinese Academy of Sciences
Beijing 100080, P.R.China

&ha@imd.cims.edu.cm

agent process system. Section 4 presented an example of real-time
supervision of oil transporting and storing. Conclusions are given
in Section 5.

2. CREATING INTELLIGENT OBJECT

A number of research projects and commercial offerings have
addressed the Object System Embeddable Rule System [1, 2].
Rule groups can be defined to be objects and/or rules can be used
to define individual members of an object. Embedding in an
object system introduces many of the advantages of object-
oriented programming to rule based programming. For example,
embedding rules in objects introduces the control paradigm of
message passing to rule-based programming.

But the following issues also arise when we apply rule-based
expert system shell to object-oriented applications:

® How to add intelligent features to the old systems based on
the object-oriented architecture and modules?

® How to keep the old applications working properly when
they are switched to multi-agent systems from the object-
oriented systems?

® How to keep high performance of the whole system to meet
the real-time requirement, such as process control, network
supervision (fraud detection), telecommunications and other
areas that need real-time decision making?

® How to create a multi-agent system using rule-based expert
system shell?

The major benefit of using rule-based expert system shell in
object systems is clearly faster and easier code maintenance. This
is due to:

1.Reasoning about objects with rules is easy and more natural.
Rules are clearer and more maintainable than pure C++ or Java
code.

2.The rules are separated from the core application source, which
increases the system’s modularity. Communication between the
application and rules occurs through a simple API. This
guarantees minimum impact on existing code when integrating

! This work is partly supported by National 95 Key Project of China, and by National Natural Science Foundation of China.

mailto:liweid@legend.com.cn
mailto:wha@imd.cims.edu.cn

rules, while providing rules with maximum inter-operability with
objects in application.

In our application, the communication bridge between the original
object application and its rules is defined as some simple
declaration.

Suppose we already have a C++ class, alarm, and we use it with
rules:

enum PriorityType {low, high }

enum Color Type { white, red, green}

Class Alarm
{
private:
ColorType _color;
PriorityType _priority;
public:
Alarm() {}
~Alarm() {}

const ColorType getColor();

void setColor(ColorType color);

const PriorityType getPriority() {};

void setPriority (PrioriType priority)
H

Declare this class to rules-based expert system shell
with the following implementation declaration:

(1) (defimplementation Alarm()

2) ((color type {ColorType}

3) reader {?object->getColor()}

4 writer {?object->setColor(?value)}
(%))

6) (priority type {PriorityType}

(7 reader {?object->getPriority()}

®) writer { ?object->setPriority(?value)}
))

10))

(11) constructor {new Alarm()}
(12) destructor {delete ?object}
(13) status external

(14))

Lineldeclares the Alarm class. The empty brackets indicate that
the Alarm class is not inherited from another class. Line2 to 10
define the class attributes. For each one, give its C++ type and
declare how to read and write their value. Lines 11 and 12
indicate how to create and destroy an object of this class. Linel3
indicates that alarm objects are external.

The declaration above is the interface between iLog Rules and
C++. Other rule-based expert system shells (Jess, JRules) have
similar interface between themselves and embedded system. In
iLog Rules every rule set leads to the generation of a C++ class,

and several classes can therefore cooperate with an application,
each class having its point of view of the application objects. In
this way intelligent classes integrate naturally into object-oriented
applications.

Figure 1 demonstrates the development cycle of an application.
The interpretative capabilities of rule-based class enable
developers to enter a faster development cycle.

agent rules

rules
interpreter

agent classes

application
classes

< object language compiler)

application
objects

application

agent objects

Figure 1

3. THE MULTI-AGENT MODEL

Multi-Agent Systems (MAS) is the subfield of Artificial
Intelligence (AI) that aims to provide both principles for
construction of complex systems involving multiple agents and
mechanisms for coordination of independent agents behaviors.
While there is no generally accepted definition of “agent" in Al,
for the purposes of this paper, an agent is object that can survey
other application objects and behave intelligently according to
them. An agent enables us to:

® To carry out fast multiple criteria search and join over the
watched objects.

® Detect specific situations
® Prioritize actions

As we described above, the applications may be implemented with
rule sets that detects the complex correlation of events and distills
the relevant meaning from a large flow of data. So the rule set
class play a role of agent. In other word, the agent is an instance
of this class, some times the agent is a collection of several classes
(include rule set object and other objects in application). The
agent can then apply its rules to these objects by deducing and

prioritizing actions according their status.

Figure2 demonstrates that at least one rule set object and some
application objects (one or several) composed an agent. The agent
includes several essential features:

rule set object

N/

I

application object

Figure 2

® The application objects through which the rule set object
communicates with the application and other agent;

® The rule set object containing all the rules whose conditions
are satisfied at a given moment (in the agenda, the rules are
sorted according to their priority; for dynamic priority, a
computation is performed when the rule is fired);

® Whether an application object is included in an agent is
decided by the dependence of the object. If an application
object can not be accessed by any rule set object, it will not
be included in any agent. But in different situation, the
result may be different.

The rule in fact encapsulated as a class and an agent is
composed of an instance of that class and other objects. This
means that we can handle agents as easily as we manipulate any
object of C++ or Java.

Each compiled rule set is a class and is distinct from other rule
sets. This independence enables us to use many different rule sets
simultaneously, and therefore easily build multi-agent systems.

In our developed multi-agent systems, agents are divided by the
different rule sets. Each agent has its own vision of the objects
representing the function and knows different objects. For
example, in a network supervision system, a network is made up a
set of sites, each site itself being made up of a set of network
elements. Each of these elements contains various internal cards.
Each network element has its own rule agent to filter its internal
alarm, and each site has its own rule agent to compute its status
according to its element alarms. The simulator agent manages all
these alarms. So a network element agent only knows the internal
card of its element and the associated alarms, while the simulator
agent knows all the internal cards and their alarms.

In the next section, we will build an actual multi-agent system
example.

4. AN EXAMPLE OF PROCESS CONTROL

The example this section is an Oil Storage Supervision and
Decision Support System (OSS&DSS).

The domain is composed of tanks, pumps, valves, and pipes.
(Figure 3)The oil is divided into two types (Light Oil and Heavy
Oil).

=)
1
N
1 2 3
Figure 3

There are three types of agent in OSS&DSS: alarm agent, control
agent and schedule agent.

The alarm agent performs the task of supervision. The rule set is
below:

/[The alarm detection of Liquidometer
(defrule TankFullAlarm high
(CTank Liquidometer=?11 Max=?I1 Flow>0 ID=7i)
?lp:(CLogicPath TolD="?i Status=ON)
->
(modify ?Ip Status=OFF)
(assert(CTankAlarm ID=?i Why=FULL))
(activate Control)
(activate Search)

The alarm agent collects the information of valve, pump, tank,
pipe, and other application objects. If there are alarms on tanks,
pumps and pipes, and only the tank alarms are significant. To
avoid the manager being submerged by too many non-significant
alarms, each element has its own rule set object to filter its own
alarms determining which alarm is significant. Each element agent
also computes its status according to its alarm. Then the status
was provided to schedule agent to create suitable plan and avoid
further alarm.

The schedule agents make plans according the follow rules set.
/ffind the Heavy Qil Tank to fill in
(defrule OutputHeavyOil default

(CTank ID=0 Content=HEAVY_OIL Flow=0)

(CTank ID=?i1 & >0 & <4 Liquidometer>0
Content=HEAVY_OIL)

?lp:(CLogicPath FromID=?i1 TolD=0 LogicValvelD="?i
Weight=?lowest)
(not (CLogicPath FromID=?i1 TolD=0 Weight<?lowest))
->
(modify ?Ip Status=0ON)
(activate Control)

When schedule agent made a plan, the control agent must finish
the tasks according to the plan. In the real world, the problem of
producing timely responses when it faced with deadlines is an
important issue for real-time control system. To deal with this
problem different priority was assigned to each task produced by
schedule agent. And control agent must build an acceptable way
to solve the task considering the time available. The design-to-
time scheduling will be discussed in another article. We just
consider the common rules set of control agents.

1
(defrule TurnOffValve high
(CLogicValve Status=OFF ID=7i)

(CPath LogicValvelD=?i partName=VALVE partID=?pi
OffStatus=7s)

?v:(CValve ID=?pi Status<>?s)

(modify ?v Status="7s)
{?v->drawValve();}

)

The rules set above makes the control agent to turn off the valves
according to the logic path, which is made by schedule agents.

The three kinds of agents communicate with each other and
cooperate their behaviors via common objects. Figure 4
demonstrate the outline of multi-agent system of OSS&DSS.

Alarm agent
Control agent

Figure 4
5. CONCLUSION

The paper shows how easily rule-based expert system allows us to
design and develop multi-agent system that share the same
implementation and communicate together in order to carry out a
complex task. The synthesis between object-oriented
programming and rule-based programming language paradigms
makes the multi-agent system easy-to-develop.

6. REFERENCES

[1] Shlomo Zilberstein, Struart Russell,
composition of real-time systems, in:
Intelligence:, 82 (1996), 181-213.

[2] ILOG Rules White Paper http://www.ilog.com/|

[3] Yoav Shoham. Agent-oriented programming, in:
Artificial Intelligence:, 60 (1993), 51-92.

Optimal
Artificial

http://www.ilog.com/

